ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Alberto Talamo, Yousry Gohar, H. Kiyavitskaya, V. Bournos, Y. Fokov, C. Routkovskaya
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 131-147
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A22310
Articles are hosted by Taylor and Francis Online.
This study compares Monte Carlo and deterministic neutronics analyses of the zero-power YALINA Thermal subcritical assembly, which is located in Minsk, Belarus. The YALINA Thermal facility consists of a subcritical core that can be driven by either a californium neutron source or a deuterium-deuterium (D-D) neutron source. The californium neutron source is generated by the natural decay of 252Cf; the D-D neutron source is generated by a deuteron accelerator. The MCNPX, MONK, NJOY, DRAGON, PARTISN, and TORT computer programs have been used for calculating the neutron spectrum, the neutron flux, and the 3He(n,p) reaction rate set by californium and D-D neutron sources. These parameters have been computed in different experimental channels of the assembly for different fuel loading configurations. The MCNPX and MONK computer programs modeled the facility without any major approximation; the PARTISN and TORT computer simulations used 69 energy groups, S16 angular quadrature set, linear anisotropic scattering, and approximately 60 homogenized material zones. The results calculated by different computer programs are in good agreement; in addition, they match the 3He(n,p) reaction rate from experimental measurements obtained by californium and D-D neutron sources.