ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. I. Federer, C. F. Leitten, Jr.
Nuclear Technology | Volume 1 | Number 6 | December 1965 | Pages 575-580
Technical Paper | doi.org/10.13182/NT65-A20586
Articles are hosted by Taylor and Francis Online.
Deposition of tungsten-rhenium alloys by the simultaneous hydrogen reduction of tungsten and rhenium hexafluorides has been studied over the temperature range 450 to 700°C using a total system pressure of 10 torr and a H2/(WF6 + ReF6) ratio of about 20. Deposits formed on the inner wall of heated copper deposition tubes through which the reacting gases passed. Under these conditions the greater ease of reduction of ReFe6 compared to WF6 resulted in nonuniform deposits having a higher rhenium content near the inlet to the reaction zone than farther downstream. Deposits containing up to 46 wt% Re have been prepared. The use of argon with the reacting gases was found to improve homogeneity. The deposits were found to contain total interstitial impurities as low as 50 parts/106. The grain structure was typically columnar. X-ray diffraction revealed the presence of two phases that coexisted throughout part of the composition range: an alpha-tungsten (bcc) structure, which was the principal phase in low rhenium deposits, and a previously unreported beta-tungsten phase, which was favored by high rhenium contents.