ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. I. Federer, C. F. Leitten, Jr.
Nuclear Technology | Volume 1 | Number 6 | December 1965 | Pages 575-580
Technical Paper | doi.org/10.13182/NT65-A20586
Articles are hosted by Taylor and Francis Online.
Deposition of tungsten-rhenium alloys by the simultaneous hydrogen reduction of tungsten and rhenium hexafluorides has been studied over the temperature range 450 to 700°C using a total system pressure of 10 torr and a H2/(WF6 + ReF6) ratio of about 20. Deposits formed on the inner wall of heated copper deposition tubes through which the reacting gases passed. Under these conditions the greater ease of reduction of ReFe6 compared to WF6 resulted in nonuniform deposits having a higher rhenium content near the inlet to the reaction zone than farther downstream. Deposits containing up to 46 wt% Re have been prepared. The use of argon with the reacting gases was found to improve homogeneity. The deposits were found to contain total interstitial impurities as low as 50 parts/106. The grain structure was typically columnar. X-ray diffraction revealed the presence of two phases that coexisted throughout part of the composition range: an alpha-tungsten (bcc) structure, which was the principal phase in low rhenium deposits, and a previously unreported beta-tungsten phase, which was favored by high rhenium contents.