ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. S. Armijo, J. R. Low, U. E. Wolff
Nuclear Technology | Volume 1 | Number 5 | October 1965 | Pages 462-477
Technical Paper | doi.org/10.13182/NT65-A20558
Articles are hosted by Taylor and Francis Online.
The mechanical properties and microstructures of Type-304 stainless steel were studied as a function of cold work, neutron irradiation, and testing temperature. True-stress, true-strain tensile tests were made on nonirradiated specimens at 70°F (21°C), 600°F (315°C), and 1300°F (700°C), and on irradiated specimens at 70°F and 600°F. Specimens were irradiated to 1.25 x 1020 n/cm2 (>1 MeV) at 110°F (43°C). Neutron irradiation increased the yield strength and ultimate tensile strength of annealed and cold-worked specimens at 70° F and at 600° F. The incremental increase in these properties decreased with increasing cold work. The elongation of nonirradiated and irradiated specimens tested at 70° F was found to increase with initial levels of cold work and then to decrease. This effect was not observed at 600° F. The most severe decreases in mechanical stability were observed in heavily deformed (greater than 20% reduction in thickness) and irradiated specimens tested at 600° F. These specimens failed in a ductile manner with total elongations as low as 1/2%. The increases in the strength and decreases in plastic stability produced by irradiation were combined by measuring the energy absorbed to plastic instability (area under the true-stress, true-strain curve up to the point of maximum load). This energy value was found to be an effective method for comparing the effects of the various variables. Cold work was found to produce large amounts of austenite-to-martensite transformation. Neutron irradiation was found to produce no measurable increase in martensite content. Transmission electron microscopy of irradiated specimens confirmed the presence of martensite and epsilon phase in Type-304 stainless steel. Irradiated specimens contained high concentrations of black dots which were not observed in nonirradiated specimens. In some instances these black dots could be resolved into loops. These black dots are presumed to be clusters of vacancies or interstitials produced by neutron radiation.