ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
R. N. Duncan, W. H. Arlt, H. E. Williamson, C. J. Baroch, J. P. Hoffmann, T. J. Pashos
Nuclear Technology | Volume 1 | Number 5 | October 1965 | Pages 413-418
Technical Paper | doi.org/10.13182/NT65-A20551
Articles are hosted by Taylor and Francis Online.
Experience with stainless-steel-clad fuel rods irradiated in the Vallecitos Boiling Water Reactor (VBWR) has shown that Type-304 stainless steel is susceptible to stress-assisted intergranular corrosion attack. Failure of over 40 fuel rods clad with this material occurred during irradiation of 950 fuel rods of several different types. The failures occurred at the peak surface heat flux region of the fuel rods and ranged from microscopic penetrations to multiple large cracks that were invariably intergranular. No precipitates could be observed in the austenitic grain boundaries of failed cladding samples using both optical and electron microscopy. A statistical analysis of the failure-rate data indicates that the failure rate for Type-304 stainless-steel cladding which was initially annealed was not different from the failure rate for initially cold-worked cladding. The failure rate of collapsed cladding was significantly higher than for free-standing cladding. The operating stress level of the cladding appears to be a major factor in susceptibility to failure. Evidence of localized plastic deformation of the cladding at UO2 pellet interfaces was obtained and may contribute to the nucleation or propagation of the stress-assisted corrosion attack of the Type-304 stainless-steel cladding.