ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fusion Energy Week begins today
Excitement around fusion has only grown this year since the French magnetic confinement fusion tokamak known as WEST maintained a plasma for 1,337 seconds in February, toppling the 1,006-second record set by China’s EAST a few weeks prior. Investment, legislation, and new research are riding this new surge of attention, but fusion development has a long history.
R. N. Duncan, W. H. Arlt, H. E. Williamson, C. J. Baroch, J. P. Hoffmann, T. J. Pashos
Nuclear Technology | Volume 1 | Number 5 | October 1965 | Pages 413-418
Technical Paper | doi.org/10.13182/NT65-A20551
Articles are hosted by Taylor and Francis Online.
Experience with stainless-steel-clad fuel rods irradiated in the Vallecitos Boiling Water Reactor (VBWR) has shown that Type-304 stainless steel is susceptible to stress-assisted intergranular corrosion attack. Failure of over 40 fuel rods clad with this material occurred during irradiation of 950 fuel rods of several different types. The failures occurred at the peak surface heat flux region of the fuel rods and ranged from microscopic penetrations to multiple large cracks that were invariably intergranular. No precipitates could be observed in the austenitic grain boundaries of failed cladding samples using both optical and electron microscopy. A statistical analysis of the failure-rate data indicates that the failure rate for Type-304 stainless-steel cladding which was initially annealed was not different from the failure rate for initially cold-worked cladding. The failure rate of collapsed cladding was significantly higher than for free-standing cladding. The operating stress level of the cladding appears to be a major factor in susceptibility to failure. Evidence of localized plastic deformation of the cladding at UO2 pellet interfaces was obtained and may contribute to the nucleation or propagation of the stress-assisted corrosion attack of the Type-304 stainless-steel cladding.