ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Beller, D. Goellner, M. Steinberg
Nuclear Technology | Volume 1 | Number 4 | August 1965 | Pages 322-326
Technical Paper | doi.org/10.13182/NT65-A20529
Articles are hosted by Taylor and Francis Online.
An evaluation of the economics of producing ozone from oxygen in a system utilizing fission fragment energy is presented with a study of the design of such a system. The study covers a range of G values for ozone formation from 3 to 15 and chemonuclear reactor ozone concentrations from 10 parts/106 to 10% at an operating temperature of −20°C. A graphite-moderated nuclear reactor design, which utilizes a 2.5-µm thick U-Pd alloy foil as fuel elements, is employed. Ozone is separated by silica-gel adsorption; decontamination procedures are described. Investment and operating costs for the chemonuclear and conventional methods of ozone production are compared for an ozone production rate of 100 ton/d. It is concluded that the chemonuclear route becomes competitive with conventional ozonizers at a steady-state concentration of 0.1% ozone for a G value of 9 and at a concentration as low as 150 parts/106 for a G value of 15. The study indicates the need for research on fission fragment and radiation chemistry in the ozone-oxygen system at temperatures from 20°C to −78°C for determining the feasibility of these yields.