ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
D. Ramaswami, N. M. Levitz, A. A. Jonke
Nuclear Technology | Volume 1 | Number 4 | August 1965 | Pages 293-300
Technical Paper | doi.org/10.13182/NT65-A20525
Articles are hosted by Taylor and Francis Online.
A fluid-bed volatility process, developed for the recovery of uranium from highly enriched uranium-zirconium and uranium-aluminum alloy fuels, involves separating the alloying material as a volatile chloride by reaction with hydrogen chloride and recovering the uranium as its volatile hexafluoride by reaction with fluorine. These highly exothermic reactions are conducted in a fluidized bed of alumina, which serves as a heat transfer medium. Process development work conducted in a 3.8-cm (1½-in.) diam nickel fluid-bed reactor with aluminum and zirconium alloys of normal uranium showed that recovery of >99% of the uranium in the fuel can be achieved. High decontamination from fission products is expected on the basis of technology developed in previous studies. Considerable economic advantage of this process over current aqueous reprocessing schemes results from (a) small waste volumes produced, mostly in solid form, (b) considerable flexibility in process operating conditions, (c) fewer operations needed, and (d) the product form, uranium hexafluoride, which is readily amenable to isotope separation or conversion for reuse as fuel.