ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
W. L. Pearl, E. G. Brush, G. G. Gaul, G. P. Wozadlo
Nuclear Technology | Volume 1 | Number 3 | June 1965 | Pages 235-245
Technical Paper | doi.org/10.13182/NT65-A20508
Articles are hosted by Taylor and Francis Online.
Incoloy-800® fuel-cladding material has been corrosion-tested under heat-transfer conditions at metal temperatures up to 1410° F (766° C) in specially designed out-of-pile superheat facilities. The hydrogen and oxygen contents of the steam were controlled to simulate those found in boiling-water-reactor systems. The corrosion data from the 4000-h heat-transfer tests indicated good corrosion resistance up to at least 1300° F (704° C) metal temperature. A compositionally changed layer developed at the metal-oxide interface. The changed layer depth appeared to be a function of time and temperature of exposure. The descaled weight-loss data for the sheaths operated at a metal temperature of 1100 to 1300° F (593 to 704° C) indicate that greater than 80% of the oxide corrosion product adhered during the first 1000-h exposure, but only about 50% of the total oxidation product remained after 4000 h. The uniform corrosion experienced by the Incoloy-800® when exposed isothermally to 1050 and 1150° F (566 and 621° C) for 10 000h indicates an initially high-corrosion rate that decreases to a lower constant rate within the first 1000 h. An insignificant amount of the oxide was lost to the system.