ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
J. R. Flanary, J. H. Goode, M. J. Bradley, L. M. Ferris, J. W. Ullmann, G. C. Wall
Nuclear Technology | Volume 1 | Number 3 | June 1965 | Pages 219-224
Technical Paper | doi.org/10.13182/NT65-A20505
Articles are hosted by Taylor and Francis Online.
Three head-end processes that culminate in decontamination and recovery of uranium and plutonium by solvent extraction were evaluated on a laboratory scale, with unirradiated UC and with UC and UC-PuC fuel specimens irradiated to burnups of up to 20 000 MWd/t. The most promising process was reaction with air-free steam (pyrohydrolysis) at 750°C followed by dissolution of the resulting oxide (UO2 or UO2-PuO2) in nitric acid. Cesium was the principal fission product volatilized, but the amount was very low (about 0.5%). The oxide and fission products were dissolved in 6.5 M HNO3, yielding solutions suitable as feeds for Purex solvent extraction. Uranium and plutonium recoveries were greater than 99.9% in batch extraction tests, being separated from fission products by a factor of at least 104. An alternative but less desirable process was direct dissolution in 13 M HNO3 followed by partial oxidation with acid permanganate of the soluble organic species formed. Plutonium losses of up to 0.4% occurred when the uranium and plutonium were stripped with dilute nitric acid after solvent extraction. Reaction of the carbides with water followed by dissolution of the oxides in nitric acid was an attractive process when tested with unirradiated materials, but this scheme is not feasible for irradiated carbides since they are relatively inert to boiling water.