ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. R. Flanary, J. H. Goode, M. J. Bradley, L. M. Ferris, J. W. Ullmann, G. C. Wall
Nuclear Technology | Volume 1 | Number 3 | June 1965 | Pages 219-224
Technical Paper | doi.org/10.13182/NT65-A20505
Articles are hosted by Taylor and Francis Online.
Three head-end processes that culminate in decontamination and recovery of uranium and plutonium by solvent extraction were evaluated on a laboratory scale, with unirradiated UC and with UC and UC-PuC fuel specimens irradiated to burnups of up to 20 000 MWd/t. The most promising process was reaction with air-free steam (pyrohydrolysis) at 750°C followed by dissolution of the resulting oxide (UO2 or UO2-PuO2) in nitric acid. Cesium was the principal fission product volatilized, but the amount was very low (about 0.5%). The oxide and fission products were dissolved in 6.5 M HNO3, yielding solutions suitable as feeds for Purex solvent extraction. Uranium and plutonium recoveries were greater than 99.9% in batch extraction tests, being separated from fission products by a factor of at least 104. An alternative but less desirable process was direct dissolution in 13 M HNO3 followed by partial oxidation with acid permanganate of the soluble organic species formed. Plutonium losses of up to 0.4% occurred when the uranium and plutonium were stripped with dilute nitric acid after solvent extraction. Reaction of the carbides with water followed by dissolution of the oxides in nitric acid was an attractive process when tested with unirradiated materials, but this scheme is not feasible for irradiated carbides since they are relatively inert to boiling water.