ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
W. R. Martin, J. R. Weir
Nuclear Technology | Volume 1 | Number 2 | April 1965 | Pages 160-167
Technical Paper | doi.org/10.13182/NT65-A20485
Articles are hosted by Taylor and Francis Online.
The tensile properties of Hastelloy N have been determined after irradiation at 700° C to a dose level of 7 × 1020 n/cm2 (E > 1 MeV) and 9 × 1020 n/cm2 (thermal). The strength and ductility of the material were determined as functions of deformation temperature for the range 20 to 900°C. These properties were also examined as functions of strain rate within the limits of 0.002 and 0.2 in./min (0.005 and 0.5 cm/min) for deformation temperatures of 500, 600, 700, and 800°C., The stress-strain relationship is not affected by irradiation at 700°C. Ductility, as measured by the true uniform and fracture strains, is reduced for deformation temperatures of 500°C and above. The loss in ductility results in a reduction in the true tensile strength. This loss is more significant at test conditions resulting in intergranular failure, such as low strain rates at elevated temperature. Postirradiation annealing of the irradiated alloy does not result in improved ductility. These data are compatible with the experiments suggesting helium generation from the (n,α) reaction of boron as the cause of low ductility., The low ductility of irradiated alloys in general is described in terms of the present knowledge of intergranular fracture. Means of improving the ductility are discussed.