ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Calvin C. Silverstein
Nuclear Technology | Volume 1 | Number 2 | April 1965 | Pages 145-150
Technical Paper | doi.org/10.13182/NT65-A20481
Articles are hosted by Taylor and Francis Online.
A thermodynamic engine which converts heat generated by a radioisotope into mechanical energy pulses is described. The mechanical energy pulses are produced by first heating a curved bimetallic disk to a temperature at which it becomes unstable and reverses curvature and then by cooling the disk to a temperature where it again becomes unstable and assumes its original curvature. The initial disk curvature is determined by the operating temperature limits desired and physical properties of the disk components. An approximate theoretical analysis of engine performance has been carried out. For a mean disk temperature of 434° F (223° C), a maximum engine temperature of 750° F (399° C), a minimum engine temperature of 68° F (20° C), and a disk temperature change of 50° F (28° C), an ideal output of 10 W-s/cycle appears attainable from an engine with the following characteristics: disk thickness 0.075 in. (1.91 mm), disk diameter 3.5 in. (8.9 cm), radioisotope thermal power 150 W, and cycle time 11 s.