ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Alexander Glaser, Laura Berzak Hopkins, M. V. Ramana
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 121-129
Technical Paper | Proliferation Issues/Nuclear Safeguards | doi.org/10.13182/NT13-A19873
Articles are hosted by Taylor and Francis Online.
Small modular reactors (SMRs) with power levels much smaller than the currently standard 1000- to 1600-MW(electric) reactor designs have been proposed as a potential game changer for the future of nuclear power. We explore the contours of an expanded nuclear power generation capacity and the associated fuel cycles. To lay out a possible geographical distribution of nuclear capacity, we use results from an integrated assessment model used in energy and climate policy analysis. A wide variety of SMR designs with distinct characteristics are under development. To explore the impacts of these different designs, we have developed notional models for two leading SMR types and analyzed their resource requirements using results from neutronics calculations. Finally, we offer an initial assessment of the proliferation risks associated with these notional SMR designs compared to standard light water reactors (LWRs) using a Markov model. The analysis indicates that SMRs based on LWR technology (integral pressurized water reactors) have higher resource requirements as compared to gigawatt-scale reactors, while SMRs with long-lived cores have much lower resource requirements but a higher fissile content in the spent fuel they generate. These characteristics translate into increased proliferation risks unless they are offset by reactor design features or dedicated safeguards approaches.