ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Masatoshi Iizuka, Kensuke Kinoshita, Yoshiharu Sakamura, Takanari Ogata, Tadafumi Koyama
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 107-120
Technical Paper | Pyrometallurgical Reprocessing | doi.org/10.13182/NT13-A19872
Articles are hosted by Taylor and Francis Online.
Fuel cycle tests using uranium and simulants with process equipment of 1 ton HM/yr throughput were conducted to develop an equipment design for long-term and hot-cell operation with stable performance, and to investigate the influence of impurities on the behavior of sensitive materials such as molten chlorides and active metals on material mass balance during repeated engineering-scale operations. These cycle tests were performed in two phases. The first phase simulated the introduction of spent oxide fuel into the metallic fuel cycle by the sequential operations of the UO2 electroreduction, electrorefining of the reduction product, salt distillation using the electrorefining product, and injection casting of U-Zr alloy using the recovered uranium metal. The second phase, consisting of electrorefining, salt distillation, and injection casting, simulated the repeated metallic fuel cycle. The major achievements and results in these cycle tests are summarized as follows:1. Simulated metallic fuel (U-Zr alloy rods) was successfully fabricated using UO2 as the starting material.2. The electrorefining, product transfer, salt distillation, and injection casting equipment operated satisfactorily, and their performance was sufficiently high, taking the target processing rate of 5 kg/day into account.3. Regarding electroreduction, the reduction rate was approximately half the target value, and the cathodic current efficiency was also low. The reasons for the unsatisfactory result are considered to be Li2O stagnancy at the cathode, the parasitic generation of lithium and the subsequent oxidation out of the cathode, and possibly the reaction between the reduced uranium and the oxygen gas evolved at the anode. Improvement of equipment design should be continued to moderate the influence of these factors on the electroreduction performance.4. Favorable material mass balance of uranium, zirconium, and ruthenium (simulated fission products) was kept during the cycle tests, including the electrorefining, product transfer, salt distillation, and injection casting steps. No influence of three-time repetition of the fuel cycle tests was found from this viewpoint. The representativity of the anode residue and cathode product samples from the electrorefining step, which strongly influences the material mass balance evaluation, would be improved by performing anode residue treatment including metal waste consolidation and cathode processing for all the cathode products.