ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
J. W. Fricano, J. Buongiorno
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 63-77
Technical Paper | Fuel Design/Defects/Examination / Materials for Nuclear Fuels | doi.org/10.13182/NT13-A19869
Articles are hosted by Taylor and Francis Online.
A metal fuel performance code was coupled to a subchannel analysis code to predict, in a computationally efficient way, critical phenomena that could lead to pin failure for steady-state and transient scenarios in sodium-cooled fast reactors. The fuel performance and subchannel codes coupled are FEAST-METAL and an updated version of COBRA-IV-I, respectively. In coupling the codes, the importance of azimuthal temperature and stress effects in the fuel pin were analyzed; it was concluded that azimuthal temperature averaging around the fuel pin is an acceptable approximation. The codes were coupled using a wrapper, the COBRA And FEAST Executer (CAFE), written in the Python programming language. Data from EBR-II was used to confirm and verify CAFE. Finally, CAFE was used to predict the maximum allowable burnup of three different fuel assembly designs (driver fuel, radial blanket, and tight-pitch breed-and-burn fuel) as a function of operating temperature, linear power, fuel composition, cladding thickness, and smear density.