ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. W. Fricano, J. Buongiorno
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 63-77
Technical Paper | Fuel Design/Defects/Examination / Materials for Nuclear Fuels | doi.org/10.13182/NT13-A19869
Articles are hosted by Taylor and Francis Online.
A metal fuel performance code was coupled to a subchannel analysis code to predict, in a computationally efficient way, critical phenomena that could lead to pin failure for steady-state and transient scenarios in sodium-cooled fast reactors. The fuel performance and subchannel codes coupled are FEAST-METAL and an updated version of COBRA-IV-I, respectively. In coupling the codes, the importance of azimuthal temperature and stress effects in the fuel pin were analyzed; it was concluded that azimuthal temperature averaging around the fuel pin is an acceptable approximation. The codes were coupled using a wrapper, the COBRA And FEAST Executer (CAFE), written in the Python programming language. Data from EBR-II was used to confirm and verify CAFE. Finally, CAFE was used to predict the maximum allowable burnup of three different fuel assembly designs (driver fuel, radial blanket, and tight-pitch breed-and-burn fuel) as a function of operating temperature, linear power, fuel composition, cladding thickness, and smear density.