ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
J. W. Fricano, J. Buongiorno
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 63-77
Technical Paper | Fuel Design/Defects/Examination / Materials for Nuclear Fuels | doi.org/10.13182/NT13-A19869
Articles are hosted by Taylor and Francis Online.
A metal fuel performance code was coupled to a subchannel analysis code to predict, in a computationally efficient way, critical phenomena that could lead to pin failure for steady-state and transient scenarios in sodium-cooled fast reactors. The fuel performance and subchannel codes coupled are FEAST-METAL and an updated version of COBRA-IV-I, respectively. In coupling the codes, the importance of azimuthal temperature and stress effects in the fuel pin were analyzed; it was concluded that azimuthal temperature averaging around the fuel pin is an acceptable approximation. The codes were coupled using a wrapper, the COBRA And FEAST Executer (CAFE), written in the Python programming language. Data from EBR-II was used to confirm and verify CAFE. Finally, CAFE was used to predict the maximum allowable burnup of three different fuel assembly designs (driver fuel, radial blanket, and tight-pitch breed-and-burn fuel) as a function of operating temperature, linear power, fuel composition, cladding thickness, and smear density.