ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Young Woo Rhee, Dong Joo Kim, Jong Hun Kim, Jae Ho Yang, Keon Sik Kim
Nuclear Technology | Volume 184 | Number 1 | October 2013 | Pages 54-62
Technical Paper | Fuel Design/Defects/Examination / Fuel Performance/Bu/Isotopes | doi.org/10.13182/NT13-A19868
Articles are hosted by Taylor and Francis Online.
A heat flux split is one of the important technical issues in dual-cooled annular fuel. The inner and outer diameters of an annular pellet should be carefully controlled because they determine the inner and outer gap sizes and thereby influence the balance in a heat flux split. The outer diameter of a sintered annular pellet can be controlled to a final uniform size by a centerless grinding. However, it is difficult and unproductive to grind the inner surface of all annular pellets. To obtain a uniform inner diameter among annular pellets and to minimize a diametric tolerance without inner surface grinding, we applied a rigid rod-inserted sintering process to the annular pellet fabrication. An annular compact was first compacted with a double-acting press and then sintered with a precisely machined rigid rod inserted. The rigid rod can prevent an inhomogeneous deformation of the inner surface during sintering, and thus it controls the inner diameter of the sintered annular pellets and reduces the inner diametric tolerance of a sintered annular pellet without inner surface grinding.