ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Baocheng Zhang, Larry Mayhue, Harish Huria, Boyan Ivanov
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 527-534
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A19439
Articles are hosted by Taylor and Francis Online.
Advanced cores and fuel assembly designs have been developed to improve operational flexibility and economic performance and to further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000® plant of Westinghouse next-generation pressurized water reactor design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. The mixture loading of fuel assemblies with significant neutron spectra causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art three-dimensional (3-D) pin-by-pin calculation methodology (P3C) and successfully implemented it in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3-D P3C methodology along with its application and validation are discussed in the paper.