ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Martin Knight, Paul Bryce, Sheldon Hall
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 398-408
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A19428
Articles are hosted by Taylor and Francis Online.
This paper describes a method of analyzing pressurized water reactor UO2/mixed oxide (MOX) cores with the lattice code WIMS and the reactor code PANTHER. "Embedded supercells," run within the reactor code, are used to correct the standard methodology of using two-group smeared data from single-assembly (SA) lattice calculations. In many other codes the weakness of this standard approach has been improved for MOX by imposing a more realistic environment in the lattice code or by improving the sophistication of the reactor code. In this approach an intermediate set of calculations is introduced, leaving both lattice and reactor calculations broadly unchanged.The essence of the approach is that the whole core is broken down into a set of embedded supercells, each extending over just four quarter assemblies, with zero leakage imposed at the assembly midlines. Each supercell is solved twice, first with a detailed multigroup pin-by-pin solution and then with the standard SA approach. Correction factors are defined by comparing the two solutions, and these can be applied in whole-core calculations.The restriction that all such calculations be modeled with zero leakage means that they are independent of each other and of the core-wide flux shape. This allows parallel precalculation for the entire cycle once the loading pattern has been determined, in much the same way that SA lattice calculations can be precalculated once the range of fuel types is known.Comparisons against a whole-core pin-by-pin reference demonstrates that the embedding process does not introduce a significant error, even after burnup and refueling. Comparisons against a WIMS reference demonstrate that a pin-by-pin multigroup diffusion solution is capable of capturing the main interface effects.This therefore defines a practical approach for achieving results close to lattice code accuracy but broadly at the cost of a standard reactor calculation.