ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
Anselmo T. Cisneros, Dan Ilas
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 331-340
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A19422
Articles are hosted by Taylor and Francis Online.
The Advanced High-Temperature Reactor (AHTR) is a 3400-MW(thermal) fluoride salt-cooled high-temperature reactor that uses coated particle fuel compacted into slabs rather than spherical or cylindrical fuel compacts. Simplified methods are required for parametric design studies to perform burnup analysis on the entire feasible design space. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations and equilibrium depletion analysis methods to analyze systems with multibatch fuel management schemes.This paper presents three elements of significant novelty. First, the reactivity-equivalent physical transformation (RPT) methodology usually applied in systems with cylindrical and spherical geometries has been extended to slab geometries. Second, implementing this RPT homogenization, a Monte Carlo-based depletion methodology was developed to search for the maximum discharge burnup in a multibatch system by iteratively estimating the beginning of equilibrium cycle composition and sampling different discharge burnups. This iterative equilibrium depletion search method fully defines an equilibrium fuel cycle (keff, power, flux, and composition evolutions) but is computationally demanding. Therefore, an analytical method, the nonlinear reactivity model, was developed so that single-batch depletion results could be extrapolated to estimate the maximum discharge burnup in systems with multibatch fuel management schemes.