ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Anselmo T. Cisneros, Dan Ilas
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 331-340
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A19422
Articles are hosted by Taylor and Francis Online.
The Advanced High-Temperature Reactor (AHTR) is a 3400-MW(thermal) fluoride salt-cooled high-temperature reactor that uses coated particle fuel compacted into slabs rather than spherical or cylindrical fuel compacts. Simplified methods are required for parametric design studies to perform burnup analysis on the entire feasible design space. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations and equilibrium depletion analysis methods to analyze systems with multibatch fuel management schemes.This paper presents three elements of significant novelty. First, the reactivity-equivalent physical transformation (RPT) methodology usually applied in systems with cylindrical and spherical geometries has been extended to slab geometries. Second, implementing this RPT homogenization, a Monte Carlo-based depletion methodology was developed to search for the maximum discharge burnup in a multibatch system by iteratively estimating the beginning of equilibrium cycle composition and sampling different discharge burnups. This iterative equilibrium depletion search method fully defines an equilibrium fuel cycle (keff, power, flux, and composition evolutions) but is computationally demanding. Therefore, an analytical method, the nonlinear reactivity model, was developed so that single-batch depletion results could be extrapolated to estimate the maximum discharge burnup in systems with multibatch fuel management schemes.