ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Guangwen Bi, Shengyi Si, Chanyun Liu
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 308-320
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A19420
Articles are hosted by Taylor and Francis Online.
This work is focused on core design, spent-fuel characteristics assessment, and fuel cycle analysis for thorium-uranium breeding recycle in a typical pressurized water reactor (PWR), without any major change to the fuel lattice and the core internals but substituting the uranium oxide (UOX) pellet with a thorium-based fuel pellet. Two mixed cores are investigated, one loaded with mixed reactor-grade plutonium-thorium oxide (PuThOX) fuel assemblies and the other with mixed reactor-grade 233U-thorium oxide (U3ThOX) fuel assemblies. The high purity of reactor-grade 233U extracted from burnt PuThOX fuel is used as seeds of U3ThOX for starting thorium-uranium breeding recycle.The core design and analysis indicated that thorium-uranium breeding recycle is technically feasible in current PWRs. In the mixed core with U3ThOX loading, the well-designed U3ThOX assemblies were located on the periphery of the core as a "blanket" region, which remain in core for six cycles and get breeding with 232Th-233U. The feedback parameters and kinetic parameters are dominated by the UOX fuel in the inner core. For the UOX/PuThOX mixed core, the higher plutonium content leads to harder neutron spectrum, smaller reactivity worth of neutron absorbers, and smaller delayed neutron fraction and prompt neutron lifetime, which are similar to the current mixed cores partially loaded with the plutonium-uranium mixed-oxide (MOX) fuel.The fuel cycle analysis has shown that 233U monorecycling with U3ThOX fuel could save 13% of natural uranium resource compared with UOX once-through fuel cycle, slightly more than that of plutonium monorecycling with MOX fuel. If 233U multirecycling with U3ThOX fuel is implemented, more natural uranium resource would be saved.