ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
R. A. Lillie, R. G. Alsmiller, Jr., J. T. Mihalczo
Nuclear Technology | Volume 43 | Number 3 | May 1979 | Pages 373-381
Technical Paper | Accelerator | doi.org/10.13182/NT79-A19225
Articles are hosted by Taylor and Francis Online.
A number of Type 316 stainless-steel right circular cylindrical shells of varying lengths have been analyzed using two-dimensional discrete-ordinates transport methods together with first- and last-flight particle estimators to aid in the design of neutron collimators for the Tokamak Fusion Test Reactor (TFTR). In the TFTR, the 14-MeV neutron source has a very large spatial extent, and the collimators must be designed to allow spectral measurements that refer to only a small spatial region of this extended source. The analysis identifies the 14-MeV neutrons from scattering in the Type 316 stainless steel immediately adjacent to the collimator opening as the dominant contributor to detector background. Collimator lengths >0.60 m were found sufficient to attenuate uncollided background neutrons for reasonable source-detector distances. The lower energy (<13.8 MeV) neutron background and gamma background were not found to be significant.