ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. J. DiMelfi, L. W. Deitrich
Nuclear Technology | Volume 43 | Number 3 | May 1979 | Pages 328-337
Technical Paper | Fuel | doi.org/10.13182/NT79-A19221
Articles are hosted by Taylor and Francis Online.
The microstructural response of fast breeder reactor fuel to accident transients has been analyzed. Based on experimental results, fuel response can be classified as either basically brittle or basically ductile in nature. In the analysis, the type of response is assumed to be determined by the behavior of grain boundary fission gas. The transient variables taken into consideration are the temperature, heating rate, the mean gas content per bubble, mean bubble spacing in the grain boundary, and the stresses resolved normal to grain boundaries containing gas bubbles. By calculating the rate at which a grain boundary bubble grows as a sharp crack and comparing it to the rate of bubble growth by mass transport, a criterion is established to predict the characteristic response of a fuel sample to a specified thermal transient. A swelling threshold time is also determined for the case of ductile fuel behavior. Tensile stresses applied to the grain boundary are shown to enhance brittle behavior, and compressive stresses are shown to enhance ductile behavior. When average values of the relevant variables are extracted from a number of fission gas release and direct electric heating experiments and are used in the above calculation, fuel behavior predictions for these tests are found to correspond well with the experimental results.