ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
Steven J. Stanley, Kat Lennox, Alex Jenkins
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 260-269
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-141
Articles are hosted by Taylor and Francis Online.
The RadBall is a 140-mm (5.5-in.)-diam deployable, passive, nonelectrical gamma hot-spot imaging device that offers a 360-deg view of the deployment area. The device is particularly useful in instances where the radiation fields inside a nuclear facility are unknown, but a suitable decommissioning strategy is required to be planned. The original version of the technology had a number of drawbacks including a relative insensitivity to radiation (at least 3 Gy required), which led to long deployment times, as well as a narrow target dose range (3 to 8 Gy), which meant that the user required prior knowledge of the radiation fields in which the device was to be deployed. The United Kingdom's National Nuclear Laboratory has developed the technology to overcome both of these issues. The developments associated with the new technology are described here, as are some recent tests undertaken at the Sellafield facility in the United Kingdom. The work has resulted in a significant improvement in sensitivity - 150 times - as well as greatly widened the target dose range to between 20 mGy and 50 Gy. The new version of the technology therefore has a much-improved applicability compared to the original technology.