ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Wei-Jen Cheng, Robert S. Sellers, Mark H. Anderson, Kumar Sridharan, Chaur-Jeng Wang, Todd R. Allen
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 248-259
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT12-125
Articles are hosted by Taylor and Francis Online.
A corrosion test was performed on 316L stainless steel alloy (316L) and Hastelloy-N superalloy (Hastelloy-N) at 850°C for 1000 h in static molten fluoride salt, 46.5LiF-11.5NaF-42KF (mol %) with Zr additions. The interactions between the graphite sample and the tested alloys in the molten salt were also analyzed. The results show that Zr addition to the salt caused the deposition of a pure Zr coating on 316L and Hastelloy-N. The formation of this coating was followed by interdiffusion between the Zr deposit and the substrates. A thicker Zr deposit was observed on Hastelloy-N samples compared to 316L due to the larger electromotive potential difference between Ni/Zr than that between Fe/Zr. The interdiffusion subsequent to Zr deposition led to the formation of a coating composed of a Ni/Zr intermetallic phase even on the iron-based 316L. This intermetallic coating on the two alloys acted as a barrier layer for Fe and Cr outward diffusion. Zr3NiO and ZrO2 phases were also observed on the coating surfaces and in the coatings, respectively. The graphite sample, on the other hand, had no direct and significant effect on the corrosion behavior of the alloys and the coating formation on the alloys.