ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Thomas R. Boyle, Robert V. Tompson, Sudarshan K. Loyalka, Tushar K. Ghosh, Michael L. Reinig, Jr.
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 149-159
Technical Paper | Fission Reactors/Materials for Nuclear Systems | doi.org/10.13182/NT13-A18108
Articles are hosted by Taylor and Francis Online.
Very high temperature reactors (VHTRs) and high temperature gas-cooled reactors (HTGRs) can develop extreme temperatures in excess of 900°C that make them theoretically very efficient, potentially in the range of 45% to 50%. The high temperatures, however, can also lead to a corresponding increase in fission product transport out of the fuel, which is potentially a source term-related safety issue. The aim of this work was to develop a repeatable, accurate, and cost-effective process to measure the diffusion coefficients of fission products in graphitic VHTR materials, particularly those materials used in the fabrication of TRISO [tristructural isotropic] fuel pellets. Specifically, this work has focused on the diffusion of silver in graphite. We constructed graphite cells that could be filled with a silver diffusant in the form of silver flakes, silver powder, or a preloaded, silver-laden graphite powder. The cells were hermetically sealed and heated to temperatures comparable to those that will be found in VHTRs. After being kept at various amounts of time and temperature, these cells were imaged using microtomography and electron microscopy. Concentration profiles were measured by sectioning the heat-treated cells and analyzing them using neutron activation analysis. Estimated diffusion coefficients for silver in a commercial grade of graphite are reported, but the method is easily adapted to any grade of graphite material including nuclear grades and to a variety of other fission product species.