ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
D. W. Kneff, Harry Farrar IV, F. M. Mann, R. E. Schenter
Nuclear Technology | Volume 49 | Number 3 | August 1980 | Pages 498-503
Technical Note | Material | doi.org/10.13182/NT80-A17698
Articles are hosted by Taylor and Francis Online.
Fast-neutron-induced total helium production cross sections can be determined from a combination of spectrum-integrated measurements and theoretical calculations. The calculations provide information on the energy-dependent cross-section shape that is generally unavailable from the limited experimental data. The measurements in turn provide a normalization for the calculations. In the present work, total helium production cross sections for copper and aluminum bombarded with ∼14.8-MeV neutrons from the T(d,n) reaction have been measured by high-sensitivity gas mass spectrometry, and independently calculated using the Hauser-Feshbach statistical model. The experimental results are 51 ± 3 mb for copper and 143 ± 7 mb for aluminum, with corresponding values of 50 and 139 mb obtained from the theoretical calculations. The agreement demonstrates that this statistical model has the potential to predict total helium production cross sections for fusion energy neutrons. Comparison of the experimental results with published cross-section evaluations for the primary Cu(n, α) and Al(n,α) reactions gives significant ∼25- and ∼28-mb helium production contributions, respectively, from reaction channels other than (n, α).