ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Hashem Akbari, Lawrence M. Grossman
Nuclear Technology | Volume 49 | Number 3 | August 1980 | Pages 400-409
Technical Paper | Reactor Siting | doi.org/10.13182/NT80-A17688
Articles are hosted by Taylor and Francis Online.
A methodology is developed to optimize the size and the location of power plants supplying given demand centers by minimizing the cost of transmission lines and plant capital costs subject to the physical constraint that the power plants must be located within a predetermined feasible geographical region. The optimization problem falls within a class of mixed integer nonlinear constrained programming for which no general method of solution exists. Optimization is carried out in two steps to separate considerations of integer and continuous variables. A complete set of possible configuration alternatives in terms of the number of power plants is first generated by examining the comers of a polyhedron set defined by the upper and lower bounds on the number of power plants at each location, with the demand satisfied through a predefined directed transmission network. Then, through a constrained nonlinear programming technique, the optimum location for each promising, feasible alternative is calculated. The best alternative, i.e., the one having the minimum total cost, is selected as the optimum solution.