ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company (TEPCO) began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Sümer Şahin, Jacques Ligou
Nuclear Technology | Volume 50 | Number 1 | August 1980 | Pages 88-94
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT80-A17072
Articles are hosted by Taylor and Francis Online.
Assuming the spontaneous fission neutron level as a neutron source, and using point kinetic methods in the course of the analytical treatment, the energy excursion of hypothetical nuclear explosives with mixed plutonium of various isotope compositions has been investigated. The α-Rossi values for the metallic density of different configurations have been evaluated with multigroup SN methods. Commercial plutonium from relatively low burned-up nuclear fuel, containing 5% 240Pu, is shown to reveal similarities with high weapons-grade plutonium, thus making possible a nuclear explosion (in combination with a sophisticated conventional implosion technique). On the other hand, commercial plutonium from moderately to highly burned up (containing 15 or 25% 240Pu nuclear fuel) will have a small probability for an energy excursion up to 100 tons TNT, even by extremely improved implosion techniques.