ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jungchung Jung
Nuclear Technology | Volume 50 | Number 1 | August 1980 | Pages 60-82
Technical Paper | Fuel | doi.org/10.13182/NT80-A17070
Articles are hosted by Taylor and Francis Online.
A nuclear analysis of tritium breeding performance has been carried out for three candidate breeding materials of liquid lithium, solid Li2O, and solid Li7Pb2. Blanket coolants studied include helium gas, liquid lithium, and water. It is found that the Li7Pb2 compound gives slightly higher breeding ratios than liquid lithium and significantly higher rates than does Li2O. The Li2O blankets reach their full breeding capability at smaller thicknesses due to moderation of the neutron spectrum by the oxygen. Due to this moderation inherent to the use of Li2O, the incorporation of a carbon reflector does not improve the performance of the blanket nearly as much as it does the performance of the Li7Pb2 and lithium blankets. In all of the cases investigated, it has turned out a thin beryllium zone separating the first wall from the breeding blanket substantially enhances the tritium production. Very little incentive for enriching any of the breeders with 6Li is found under conditions both with and without beryllium neutron multiplier. Calculations for water-cooled systems indicate a possible improvement in breeding performance over that obtained with helium, particularly for Li7Pb2 systems.