ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Glenn E. Lucas, R. M. N. Pelloux
Nuclear Technology | Volume 53 | Number 1 | April 1981 | Pages 46-57
Technical Paper | Material | doi.org/10.13182/NT81-A17055
Articles are hosted by Taylor and Francis Online.
A study was made of the applicability of time-hardening and strain-hardening rules to describe creep deformation in Zircaloy-2 under variable stress and temperature conditions. Variable stress and variable temperature creep data were compared to isotonic (iso-stress) and isothermal data in the stress regime 69 to 172 MPa and the temperature regime 325 to 400°C. It was observed that creep deformation under these variable conditions does not follow a time-hardening rule. A strain-hardening rule, on the other hand, described well the variable temperature creep deformation at temperatures up to 375°C. At 400°C, however, the strain-hardening rule broke down because of a nonnegligible recovery rate. Consequently, for conditions in which recovery is significant, an explicit treatment of recovery rates may be necessary for accurate creep predictions.