ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Glenn E. Lucas, R. M. N. Pelloux
Nuclear Technology | Volume 53 | Number 1 | April 1981 | Pages 46-57
Technical Paper | Material | doi.org/10.13182/NT81-A17055
Articles are hosted by Taylor and Francis Online.
A study was made of the applicability of time-hardening and strain-hardening rules to describe creep deformation in Zircaloy-2 under variable stress and temperature conditions. Variable stress and variable temperature creep data were compared to isotonic (iso-stress) and isothermal data in the stress regime 69 to 172 MPa and the temperature regime 325 to 400°C. It was observed that creep deformation under these variable conditions does not follow a time-hardening rule. A strain-hardening rule, on the other hand, described well the variable temperature creep deformation at temperatures up to 375°C. At 400°C, however, the strain-hardening rule broke down because of a nonnegligible recovery rate. Consequently, for conditions in which recovery is significant, an explicit treatment of recovery rates may be necessary for accurate creep predictions.