ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Roger G. Jarvis, Roger J. Joynes, Colleen I. Bretzlaff
Nuclear Technology | Volume 53 | Number 1 | April 1981 | Pages 30-36
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A17053
Articles are hosted by Taylor and Francis Online.
Fuel elements for Canadian deuterium uranium reactors are assembled from stacks of cylindrical UO2 pellets, with close tolerances on lengths and diameters. Present stacking techniques involve extensive manual operations and they can be speeded up and reduced in cost by an automated device. If gamma-active fuel is handled, such a device is essential. An automatic fuel pellet assembly process was modeled mathematically. The model indicated a suitable sequence of pellet manipulations to arrive at a stack length that was always within tolerance. This sequence was used as the initial input for the design of mechanical hardware. The mechanical design and the refinement of the mathematical model proceeded simultaneously. Allowances were made for mechanical constraints in the model, and its optimized sequence of operations was incorporated in a microcomputer program to control the mechanical hardware.