ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Gunzo Uchiyama, Sachio Fujine, Shinobu Hotoku, Mitsuru Maeda
Nuclear Technology | Volume 102 | Number 3 | June 1993 | Pages 341-352
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT93-A17033
Articles are hosted by Taylor and Francis Online.
A new neptunium, plutonium, and uranium separation process using n- and iso-butyraldehydes as reductantsfor Np(VI) and Pu(IV), respectively, is described for nuclear fuel reprocessing. A kinetics study and a chemical flow sheet study are conducted to develop the selective separation process for neptunium, plutonium, and uranium. In the kinetics study, it is found that n-butyraldehyde reduces Np(VI) to Np(V) in the Purex solution but does not reduce Pu(IV) and U(VI), and iso-butyraldehyde reduces Np(VI) and Pu(IV) but does not reduce U(VI). Based on these results, a new process to separate neptunium, plutonium, and uranium selectively is proposed. The process consists mainly of three steps: the codecontamination step, the neptunium separation step [in which Np(VI) extracted by a solvent of 30% tri-n-butyl phosphate (TBP)/n-dodecane together with Pu(IV) and U(VI) is reduced to Np(V) by n-butyraldehyde and is back-extracted from the solvent], and the uranium/plutonium (U/Pu) partition step using iso-butyraldehyde as a Pu(IV) reductant. In the chemical flow sheet study, the effectiveness of the separation process is demonstrated by the use of miniature mixer-settlers. In the neptunium separation step, ∼99.98% of the neptunium extracted by the 30% TBP/n-dodecane solvent along with U(VI) in the uranium/neptunium coextraction step is reduced by n-butyraldehyde and separated from the uranium stream. In the U/Pu partition step, >99% of the plutonium is reduced by iso-butyraldehyde and separated from the uranium stream.