ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul C. S. Wu
Nuclear Technology | Volume 39 | Number 1 | June 1978 | Pages 84-94
Nuclear Safety Analysis | Energy Modeling and Forecasting / Material | doi.org/10.13182/NT78-A17010
Articles are hosted by Taylor and Francis Online.
The physical and nuclear properties of EU2O3 were reviewed, evaluated, and compared with those of the other potential control materials for breeder reactors. Europia with a 90% theoretical density has approximately the same amount of europium atoms per unit volume as the pure metal. Consequently, the reactivity worth per unit volume of Eu2O3 is similar to that of pure metal. In addition, the reactivity of EU2O3 is superior to tantalum and is comparable to natural B4C. The decay heat of Eu2O3 is much lower than that of tantalum over the range of decay times that is of interest with respect to handling. Irradiation-induced swelling of EU2O3 is lower than that of B4C, and postirradiation examination revealed only ∼1% dimensional changes in the thermal- and/or fast-neutron spectrum (8 × 1025 n/m2). Although surface reaction between EU2O3 and the fast test reactor reference cladding Type 316 stainless steel leads to the formation of a europium silicate, it is expected that Eu2O3 would be compatible with low-silicon Type 316 stainless steel. In addition, the Eu2O3-sodium system was also shown to be compatible under simulated liquid-metal fast breeder reactor conditions without significant change. Consequently, Eu2O3 is an excellent alternate candidate compared to B4C as the neutron absorber for fast breeder reactors.