ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. F. Calaway
Nuclear Technology | Volume 39 | Number 1 | June 1978 | Pages 63-74
Nuclear Safety Analysis | Energy Modeling and Forecasting / Chemical Processing | doi.org/10.13182/NT78-A17008
Articles are hosted by Taylor and Francis Online.
The electrochemical evolution of hydrogen from a molten solution of LiF-LiCl-LiBr containing small quantities of LiH and saturated with metallic lithium has been demonstrated. The evolved hydrogen is recovered from the melt by sweeping the hydrogen electrode with a circulating stream of argon and subsequently trapping the hydrogen from the argon with a hot titanium getter bed. It is found that by continually gettering the argon, 100 ± 2% of the hydride present in the molten salt, at a concentration of 1 wppm, is recoverable. Results of metallographic examinations of stainless-steel components in contact with the salt solution during the experiments indicate some evidence of surface attack (10 to 15 µm) and intergranular penetration (30 to 50 µm), but extrapolated corrosion rates are generally small (∼0.2 mm/yr). These results incorporated into a reevaluation of the molten-salt extraction process, as it applied to tritium recovery from a liquid-lithium fusion reactor blanket, indicate a more favorable processing capability than was previously expected.