ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Tsutomu Hoshino
Nuclear Technology | Volume 39 | Number 1 | June 1978 | Pages 46-62
Nuclear Safety Analysis | Energy Modeling and Forecasting / Fuel Cycle | doi.org/10.13182/NT78-A17007
Articles are hosted by Taylor and Francis Online.
A planning tool for strategic operation of nuclear power plants has been presented with a wider view on the overall utility system management. The tool was flexible enough to be capable of checking the feasibility of the proposed alternative plans as well as optimizing the plans in terms of the minimization of system operating costs over several refueling cycles. The problem was defined in a small-scale utility system that consisted of a nuclear power plant and a replacement power station. The optimum decision was made on an in-core refueling pattern, its associated number of fuel assemblies, and the time length of coastdown operation. The optimization was subject to several physical and engineering constraints on reactor operation. Following the general decomposition approach, the method utilized iterative linear programming and a gradient projection algorithm of nonlinear programming. A typical pressurized water reactor was studied. The economic gain was obtained mainly by filling margins originally involved in the reactivity and burnup limitations as well as by optimum coastdown operations. The flexibility of the method was especially enhanced in a case of recovery planning after unexpected plant outages with subsequent forced power reductions.