ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Sweden’s SKB awards early contract for repository construction
The Swedish Nuclear Fuel and Waste Management Company (Svensk Kärnbränslehantering AB, or SKB) has signed a collaboration agreement with the multinational construction company Implenia to build the first underground section of a deep repository for radioactive waste near Sweden’s Forsmark nuclear power plant.
D. D. Lisowski, T. C. Haskin, A. Tokuhiro, M. H. Anderson, M. L. Corradini
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 75-87
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-A16993
Articles are hosted by Taylor and Francis Online.
Recent design efforts have used the reactor cavity cooling system (RCCS) for passive decay heat removal in the Next Generation Nuclear Plant. Employing a series of riser tubes and cooling panels that line the containment walls, the RCCS can provide an ultimate heat sink for decay power removal from the system without the need for AC power. With vessel wall temperatures expected to reach 450°C, intuition suggests that radiation will be the dominant mode of heat transfer. However, the authors show that several factors can alter these modes; variations in cavity height, riser tube geometry, and vessel heat flux may have significant roles in the heat removal by the RCCS.The authors have constructed a one-quarter-scale water-cooled experimental facility at the University of Wisconsin-Madison that is based on available open literature of the General Atomics modular high-temperature gas-cooled reactor, with a three-riser tube and cooling panel test section representing a 5-deg slice of the full-scale design. Under prototypic heat flux conditions, a series of scoping tests with linear and asymmetrically skewed heating profiles were performed to investigate the split in flow distribution among the parallel channels. Numerical results, using RELAP5 models and FLUENT simulations, provide a comparison to experimental data sets and insight into the split among heat transfer modes present in the cavity.Application of these passive decay heat removal systems demands a pragmatic approach that can account for the irregularities and nonuniformities present in a real design. In areas of blocked views, such as near support structures and primary cooling pipes, convection can provide a mechanism to smooth the otherwise skewed radiative heat flux for heat transfer from the reactor pressure vessel walls to the cooling panels. Integral to the design of the RCCS, the cooling fins serve to protect the cavity wall while adding additional pathways for heat dissipation by conduction into the cooling tubes.