ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Anthony M. Scopatz, Erich A. Schneider, Jun Li, Man-Sung Yim
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 45-61
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A16991
Articles are hosted by Taylor and Francis Online.
Technology development and deployment decisions are justified by weighing their costs against the expected benefits. Multiple nuclear fuel cycle (NFC) simulation models have been devised, some with the aim of quantifying cyclewide sensitivities to variations from base-case scenarios. Base-case sensitivity studies often perturb only one parameter at a time and only in the region around the initial value. This paper details a sensitivity study methodology that applies entropy-based statistical methods of information theory to describe outcomes produced by an NFC model. This supersedes past efforts at sensitivity and uncertainty analysis by allowing a much larger space to be explored. Here, 30 independent fuel cycle parameters for a fast reactor-light water reactor hybrid scenario are varied simultaneously and stochastically. This fuel cycle schema was chosen as a well-known, sufficiently complex model; the underlying statistical methods could be applied to any cycle. This study uses the uncertainty coefficient computed from contingency tables (CTs) to represent the sensitivity of a technology-defining input to the response. The response of interest here was taken to be the deep geologic repository capacity for a given realization of fuel cycle inputs. After computing the uncertainty coefficients, the inputs themselves are sorted based on decreasing sensitivities. Fast reactor used fuel plutonium separations were found to be most important to the cycle. Furthermore, to represent input covariances (the effect of one input on the sensitivity of a second input to the response), a new measure is defined on three-dimensional CTs. This metric is the coefficient of the variation of uncertainty coefficient of two-dimensional slices of the original table. Sorting by this sensitivity of sensitivity metric, the input pair of fast reactor americium separations together with high-level-waste storage time was found to have the largest joint effect on the repository capacity.