ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. C. Morreale, M. R. Ball, D. R. Novog, J. C. Luxat
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 30-44
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A16990
Articles are hosted by Taylor and Francis Online.
The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation, and heat loads of spent material. The burning of transuranic (TRU) fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while significantly reducing the fast reactor infrastructure needed. This paper examines the features of actinide mixed-oxide (MOX) fuel, TRUMOX, in a CANDU® nuclear reactor. The actinide concentrations used were based on extraction from 30-year-cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, supercell calculations were analyzed in DRAGON, and full-core analysis was executed in the RFSP two-group diffusion code. A time-average full-core model was produced and analyzed for reactor coefficients, reactivity device worth, and online fueling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 29.91 MWd/kg heavy element and an actinide transmutation rate of 35% for a single pass. A fully TRUMOX-fueled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing, and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle.