ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Sung Joong Kim, Lin-Wen Hu, Floyd Dunn
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 315-334
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-81
Articles are hosted by Taylor and Francis Online.
The Massachusetts Institute of Technology Research Reactor (MITR) is evaluating a transitional core conversion strategy for converting from high-enrichment uranium (HEU) to low-enrichment uranium (LEU) fuel. The objective of this study is to analyze steady-state operational safety margins and loss of primary flow (LOF) accidents for the postulated HEU-LEU transitional core configurations. The thermal-hydraulic calculation was performed using the RELAP5 MOD 3.3 code based on 7.40-MW reactor power, which is the limiting safety system settings of the current licensed reactor power of 6 MW. A lumped average and a single hot channel were modeled in each core configuration with radial peaking factors of 2.0 and 1.76 for HEU and LEU fuel elements, respectively. Four natural convection valves and two antisiphon valves were modeled for natural convective heat removal during the LOF transient. Two different hot-channel configurations and full- and side-channel geometries were evaluated because the unique design of the MITR fuel element can form these two types of geometries. RELAP5 calculation results suggest that the transitional core conversion strategy is feasible and that sufficient thermal-hydraulic safety margins can be maintained.