ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
I. K. Park, J. H. Kim, S. H. Hong, S. W. Hong
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 302-314
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-A16981
Articles are hosted by Taylor and Francis Online.
The Test for Real cOrium Interaction with water (TROI) experiments have been performed to reveal unsolved issues of a steam explosion using real core material at the Korea Atomic Energy Research Institute. One of the findings from the TROI experiments is that the results of a fuel coolant interaction (FCI) are strongly dependent on the composition of corium, which is composed of UO2, ZrO2, Zr, and steel.The TROI tests were analyzed in view of a particle size response for various types of fuel coolant explosions. This can provide an understanding about the relationship between an initial condition, the mixing, and the explosion. The particle size distribution data from the TROI tests and a single-particle film boiling model were used for all these analyses.The difference between a quenched FCI and an explosive FCI was defined by comparing the final particle size. This analysis indicates that an explosive FCI resulted in a large amount of fine particles and in a small amount of large-sized particles. With this, the mixing size of the particles that participate in the steam explosion and the fine-particle size produced from a steam explosion can be defined in the TROI test.The particle size distributions of the quenched TROI tests were then considered. We note that the explosive test results cannot provide information on the mixing process. This analysis on the particle size indicates that a self-triggered system includes large-sized particles to participate in a steam explosion, but a non-self-triggered system includes smaller-sized particles and more fine-sized particles.Finally, the explosion potentials of the quenched TROI tests were compared to each other. Thus, the single-particle film boiling model based on the particle size distribution provides the explanation for the explosion behaviors of a variety of melts.