ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. Stange, H. Yeom, B. Semerau, K. Sridharan, M. Corradini
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 286-301
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-A16980
Articles are hosted by Taylor and Francis Online.
Pool boiling critical heat flux (CHF) measurements have been performed on stainless steel and zirconium wires in nanofluids consisting of oxide nanoparticles (7 to 250 nm) dispersed in water as well as in high-purity water after coating these wires with a variety of materials and methods. For the nanofluids study, nanoparticles of titania, alumina, zirconia, and yttria-stabilized zirconia (YSZ) were investigated for various sizes and concentrations. Results showed improvements in CHF in the range of 50% to 100%, with titania and zirconia exhibiting the highest and the lowest levels of improvement, respectively. Wires were coated separately with the same oxide nanoparticle materials, as well as pure titanium nanoparticles, using the electrophoretic deposition (EPD) technique and by nanofluid boiling. EPD coatings yielded superior and more consistent improvements in CHF values in clean water, suggesting that this could be a more practical approach than using nanofluids. Coating uniformity plays an important role in dictating the levels of CHF enhancement. In all cases, titania provided for high levels of improvement, while YSZ showed similarly high levels of improvement in some cases. Pure titanium coatings exhibited lower levels of improvement, indicating qualitatively that the lower wettability on metallic substrates (as compared to oxides) may play a role in dictating CHF improvements. Titanium, however, exhibits better adhesion to metallic substrates than do oxides, which is an important property for applications in a reactor environment. Given this, the improvements in CHF achieved by titanium coatings were sufficient to justify further study.