ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Argonne scientists use AI to detect hidden defects in stainless steel
Imagine you’re constructing a bridge or designing an airplane, and everything appears flawless on the outside. However, microscopic flaws beneath the surface could weaken the entire structure over time.
These hidden defects can be difficult to detect with traditional inspection methods, but a new technology developed by scientists at the U.S. Department of Energy’s Argonne National Laboratory is changing that. Using artificial intelligence and advanced imaging techniques, researchers have developed a method to reveal these tiny flaws before they become critical problems.
Mark Massie, Benoit Forget
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 207-223
Regular Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Fission Reactors | doi.org/10.13182/NT13-A16431
Articles are hosted by Taylor and Francis Online.
This work presents a methodology for determining the optimal neutron energy spectrum for meeting user-specified transmutation objectives. A simulated annealing routine is used to find the optimal neutron energy distribution by iteratively modifying the flux spectrum, performing depletion calculations, and computing the value of the cost function.To demonstrate this methodology, we found optimal flux spectra for transmuting used nuclear fuel (UNF) to maximize proliferation resistance and to maximize repository capacity by minimizing decay heat. Multiple cost functions are evaluated for each of the two objectives. For maximizing proliferation resistance, we determined the optimal spectra for minimizing 239Pu mass, maximizing 238Pu mass, maximizing 240Pu mass, and minimizing the mass ratio of 239Pu to 238Pu and 240Pu. The results of this study show that while both fast and thermal neutrons are useful for reducing the amount of 239Pu, a thermal spectrum is best for rendering plutonium from UNF unusable as weapons material.Optimal spectra for maximizing repository capacity are found for minimizing the time-integrated decay heat generated by the transmuted UNF. This study shows that optimal transmutation of the full UNF vector can reduce the amount of decay heat released over 10 000 yr by [approximately]39% and that even more substantial reductions are possible with transuranic element-only transmutation, which can decrease decay energy by >81%. Furthermore, it is shown that a thermal spectrum is substantially more effective than a fast spectrum for reducing decay heat released by UNF over 10 000 yr, thus increasing the capacity of heat-limited waste repositories. Results such as these provide powerful insight into the complicated energy dependence of transmutation and illustrate this methodology's effectiveness as a scoping tool.