ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Don't forget to vote!
The 2021 ANS Election is open. This is your chance to help shape the future of your Society.
All ANS members were sent an email on February 22 with a unique username and password from Survey & Ballot Systems (SBS). If you did not receive this email or you do not have your election login information, please go to directvote.net/ANS, enter your email address that is on file with ANS, and your election login information will be emailed to you.
Harn Chyi Lim, Karin Rudman, Kapil Krishnan, Robert McDonald, Patricia Dickerson, Darrin Byler, Pedro Peralta, Chris Stanek, Kenneth McClellan
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 155-163
Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Fuel Cycle and Management | dx.doi.org/10.13182/NT13-A16427
Articles are hosted by Taylor and Francis Online.
Transport of fission products (FPs) inside fuel pellets is an important mechanism that affects microstructure evolution as well as fuel performance. To study this phenomenon for low fuel burnups, when solid-state diffusion is likely to be the controlling mechanism that sets the stage for subsequent phenomena, e.g., fission gas bubble formation and linkage, we created a three-dimensional (3-D) finite element model based on the real microstructure of a depleted UO2 sample. The model couples grain bulk, grain boundary (GB), and triple junction (TJ) diffusion by using 3-D elements for grain bulks, two-dimensional elements for GBs, and one-dimensional elements for TJs. Grain boundary percolation theory is applied in one case study, and the result shows that the presence of high-diffusivity TJs reduces the effect of GB percolation. The model is also used with mass generation from grain bulks, and it is found that localized regions with a high concentration of FPs can form in the presence of a dominant GB percolation path. The work introduces an approach to model diffusion through GBs and TJs at a fair computational cost that can be applied to study the effects of microstructure on FP transport.