ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
D. C. Witt, R. F. Bradley
Nuclear Technology | Volume 43 | Number 2 | April 1979 | Pages 244-258
Technical Paper | The Back End of the Light Water Reactor Fuel Cycle / Fuel Cycle | doi.org/10.13182/NT79-A16315
Articles are hosted by Taylor and Francis Online.
One alternative for closing the nuclear fuel cycle is efficient, high decontamination separation of uranium and plutonium and fabrication of a Pu-U mixed-oxide fuel Detailed flowsheets were prepared by Savannah River Laboratory for a conceptual 10 MT/day reprocessing facility. The generation of liquid waste and the associated liquid waste handling facilities for the reprocessing plant were defined. Over 40 individual waste streams were identified. The reference facility generates 6.4 m3 (1700 gal) of high-level liquid waste (HLLW) per day, which is converted to 0.5 m3 (130 gal) of glass contained in three packages, each 0.3 m (12 in.) in diameter × 3 m (10 ft) high. Each operating day, the process converts 2.9 m3 (775 gal) of concentrated intermediate-level liquid waste (ILLW) to 4 m3 (1050 gal) of cemented solid in 21 carbon steel drums. Large-scale underground tank storage of liquid waste is eliminated by prompt solidification of the HLLW and ILLW. Each container of glass contains 30 kW nuclear decay heat and must be stored in water for an interim period prior to shipment to a federal repository.