ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. A. Grimm
Nuclear Technology | Volume 43 | Number 2 | April 1979 | Pages 146-154
Technical Paper | The Back End of the Light Water Reactor Fuel Cycle / Fuel Cycle | doi.org/10.13182/NT79-A16306
Articles are hosted by Taylor and Francis Online.
General Electric (GE) experience in operation of the Morris spent fuel storage facility, which now contains over 300 Mg of both boiling water reactor (BWR) and pressurized water reactor spent fuel, confirms that receipt, handling, and storage of spent fuel can be accomplished safely with negligible impact on the environment or the operation itself. Basin water treatment is accomplished with disposable powdered resins applied to a precoated filter-demineralizer unit, and special applications of Zeolites aid in maintaining radiocobalt and radiocesium concentrations to <4 × 10−4 μCi/ml in the basin water. No gaseous radioisotopes from damaged or leaking fuel have been observed, and no significant increases in radioactivity or loss of cladding integrity have been observed during fuel handling and storage. GE has utilized this experience to design an expansion of the Morris basin and to design Boral-poisoned, high-density, stainless-steel storage modules for BWR reactor pools. These free-standing modules store BWR fuel on 165.1-mm (6.5-in.) center spacing, and a sliding low-friction support system limits the seismic loads applied to the fuel. Application of this fuel storage experience has permitted expansion of storage capacity for spent fuel at Morris and at BWR reactors, permitting continued operation until federal programs for long-term storage have been clarified and implemented.