ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
G. L. DePoorter, C. K. Rofer-DePoorter, S. W. Hayter
Nuclear Technology | Volume 43 | Number 2 | April 1979 | Pages 132-135
Technical Paper | The Back End of the Light Water Reactor Fuel Cycle / Fuel Cycle | doi.org/10.13182/NT79-A16304
Articles are hosted by Taylor and Francis Online.
U(IV) can be photochemically produced in tri-n-butyl phosphate solutions from uranyl nitrate and used to reduce Pu(IV). Nitrite production can be controlled by filtering out light having wavelengths of <350 nm and by keeping the temperature of the reaction mixture below 10°C. Another product of the photolysis, di-n-butyl phosphate, can interfere with the reduction, but no effect was apparent in our experiments. Conventional solvent cleanup procedures should remove photolysis side products. The application of this process to the reprocessing of nuclear fuel would require commercially available light sources that can be located outside the hot zone of the plant and a reactor vessel with windows within the hot zone.