ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
K. Natesan, D. L. Smith
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 138-150
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16283
Articles are hosted by Taylor and Francis Online.
Thermodynamic calculations were made on the distribution of hydrogen and tritium between various refractory metals and liquid lithium as a function of temperature. The limiting tritium pressures that can be attained by cold trapping secondary liquid metals such as sodium, potassium, and sodium—78 wt% potassium (NaK) were also calculated. In the absence of tritium breeding, these pressures are 2.5 × 10−5, 2 × 10−7, and 1.2 × 10−10 Torr for sodium, potassium, and NaK, respectively, which correspond to tritium concentrations in lithium of 45, 4, and < 1 ppm, respectively, at 700°C. For a 1000-MW(th) thermonuclear reactor with a tritium breeding rate of 150 g/day, a tritium recovery system that incorporates (a) a separate lithium purification loop with niobium as the permeable membrane, (b) NaK as the secondary heat transport fluid, and (c) tungsten cladding on the IHX tubes will yield a tritium pressure of 10−9 Torr or less in the secondary system. This configuration will result in a tritium release rate ∼10−6 g/h to the steam system for a tungsten-clad steam generator operating at ∼600°C. The corresponding activity release rate is ∼300 Ci/yr.