ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Amazon provides update on its Washington project with X-energy
A year ago this month, Amazon led a $500 million investment in X-energy, alongside Citadel founder Ken Griffin, the University of Michigan, and other investors. In addition to that financing, Amazon pledged to support the development of an initial four-unit, 320-MW project with Energy Northwest in Washington state.
Don M. Parkin, Donald G. Schweitzer
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 108-114
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16279
Articles are hosted by Taylor and Francis Online.
Multifilamentary composite wires of Nb Ti and Nb3Sn have been irradiated at 60 ± 5°C with fast neutrons to fluences of 6 × 1019 n/cm2. Measurements of the superconducting critical current, Ic , as a function of transverse field show that the NbTi wires are only moderately affected by neutron irradiation. At a fluence of 6 × 1019 n/cm2, Ic (40 kG) is 82% of the unirradiated value. The Nb3Sn composites undergo a catastrophic reduction in Ic with an apparent threshold at a fluence of 2 to 3 × 1018 n/cm2. Between 2 to 3 × 1018 and 1.1 × 1019 n/cm2, Ic (40 kG) has been reduced to 4% of the unirradiated value. At a fluence of 6×1019 n/cm2, the upper critical field of Nb3Sn has been reduced from 240 kG to 9 ± 0.5 kG. The corresponding Tc has been decreased from 16.4 to 6°K. Annealing of Nb3Sn samples irradiated to 1.1 × 1019 n/cm2 produces only 19% recovery in Ic after h at 400°C.