ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Don M. Parkin, Donald G. Schweitzer
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 108-114
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16279
Articles are hosted by Taylor and Francis Online.
Multifilamentary composite wires of Nb Ti and Nb3Sn have been irradiated at 60 ± 5°C with fast neutrons to fluences of 6 × 1019 n/cm2. Measurements of the superconducting critical current, Ic , as a function of transverse field show that the NbTi wires are only moderately affected by neutron irradiation. At a fluence of 6 × 1019 n/cm2, Ic (40 kG) is 82% of the unirradiated value. The Nb3Sn composites undergo a catastrophic reduction in Ic with an apparent threshold at a fluence of 2 to 3 × 1018 n/cm2. Between 2 to 3 × 1018 and 1.1 × 1019 n/cm2, Ic (40 kG) has been reduced to 4% of the unirradiated value. At a fluence of 6×1019 n/cm2, the upper critical field of Nb3Sn has been reduced from 240 kG to 9 ± 0.5 kG. The corresponding Tc has been decreased from 16.4 to 6°K. Annealing of Nb3Sn samples irradiated to 1.1 × 1019 n/cm2 produces only 19% recovery in Ic after h at 400°C.