ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
T. G. Godfrey, D. L. McElroy, Z. L. Ardary
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 94-107
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16278
Articles are hosted by Taylor and Francis Online.
The thermal conductivity, λ, of three samples of oriented fibrous carbon insulation of possible interest to fusion reactors was measured from 300 to 1300°K in a radial heat-flow apparatus. Samples of 0.18 g/cm3 density were prepared by a vacuum filtration process from carbon fibers and powdered phenolic resin and were characterized after carbonization. The λ of these low-density composites depended on both the heat treatment temperature and the fiber orientation. For samples heat treated at 1575°K, the room-temperature λ perpendicular to the planes of fibers was ∼0.5 mW/(cm °K) and was three times as high in the direction parallel to the planes. At 1000°K, the λ in both directions had doubled, primarily because of the positive dλ/dT of the amorphous carbon fibers. Material heat treated at 2775°K had a significantly higher room-temperature λ and a negative dλ/dT, indicating that a slight degree of ordering or graphiti-zation had occurred in the fibers during heat treatment. At high temperatures, the λ of all three samples increased markedly because of radiative heat transport.