ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
K. L. Merkle
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 66-78
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16275
Articles are hosted by Taylor and Francis Online.
Using transmission electron microscopy, 14-MeV damage has been investigated in gold. The sites of energetic displacement cascades are visible because of the presence of vacancy clusters formed by the collapse or rearrangement of vacancies within the depleted zones. A strong tendency toward subcascade formation has been found in the 14-MeV neutron-induced cascades. On the average, 1.8 clusters are formed per cascade. Individual cascades with as many as six subcascades have been found. The number densities of clusters and cascades are proportional to the fluence. The cross section for the formation of visible cascades is σc = 3.3 × 10-24 cm2. It can be shown that recoils from elastic neutron-scattering events can account for <20% of the visible cascades. The cross section corresponding to the balance of the observed cascades is, within experimental error, equal to the nonelastic neutron-scattering cross section. This indicates that all nonelastic scattering events lead to the formation of a visible cascade. We find quantitative agreement with what is expected from heavy-ion bombardments regarding the cross sections involved; however, estimates of the average cascade energy in the 14-MeV neutron bombardments are somewhat higher than expected.