ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. L. Merkle
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 66-78
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16275
Articles are hosted by Taylor and Francis Online.
Using transmission electron microscopy, 14-MeV damage has been investigated in gold. The sites of energetic displacement cascades are visible because of the presence of vacancy clusters formed by the collapse or rearrangement of vacancies within the depleted zones. A strong tendency toward subcascade formation has been found in the 14-MeV neutron-induced cascades. On the average, 1.8 clusters are formed per cascade. Individual cascades with as many as six subcascades have been found. The number densities of clusters and cascades are proportional to the fluence. The cross section for the formation of visible cascades is σc = 3.3 × 10-24 cm2. It can be shown that recoils from elastic neutron-scattering events can account for <20% of the visible cascades. The cross section corresponding to the balance of the observed cascades is, within experimental error, equal to the nonelastic neutron-scattering cross section. This indicates that all nonelastic scattering events lead to the formation of a visible cascade. We find quantitative agreement with what is expected from heavy-ion bombardments regarding the cross sections involved; however, estimates of the average cascade energy in the 14-MeV neutron bombardments are somewhat higher than expected.