ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
V. K. Sikka, J. Moteff
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 52-65
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16274
Articles are hosted by Taylor and Francis Online.
The thermal stability of neutron-induced defects in molybdenum irradiated in Experimental Breeder Reactor II (EBR-II) to a fast-neutron fluence of ∼1 × 1022 n/cm2 (E >1 MeV) clearly suggests that there are critical temperature regimes that should be avoided by reactor design engineers. These regions are manifested by a rapid change in the micro structure within a small temperature interval, a circumstance that can significantly influence the strength and corresponding ductility of the material. One critical temperature occurs at ∼800°C, where the irradiation-induced modulus-corrected strength could vary significantly compared to unirradiated molybdenum for a small temperature variation around 800°C. Voids have been shown to occur in specimens irradiated at 430, 580, 700, 800, 900, and 1000°C; these voids are stable at temperatures up to ∼0.60 Tm , rather than the 0.55 Tm value reported earlier for low fluence irradiations. The increase in the complete void removal temperature is suggested to exist due to the presence of a larger void size and the ordered void lattice structure in EBR-II samples.