ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
G. L. Kulcinski, R. G. Brown, R. G. Lott, P. A. Sanger
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 20-35
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16271
Articles are hosted by Taylor and Francis Online.
A detailed analysis of the radiation damage problems to be expected in a specific D-T fueled fusion reactor has been conducted. The system examined is the 5000-MW(th) University of Wisconsin Tokamak reactor (UWMAK), which is constructed of 20% cold-worked Type-316 stainless steel and operated at a maximum temperature of 500°C and a neutron wall loading of 1.25 MW/m2. The major radiation damage problem appears to be the loss in ductility; that is, the uniform elongation of the Type-316 stainless steel in the UWMAK-I first wall may fall to <0.5% after one to two years of operation. Another serious problem will be the void-induced swelling in the steel. Based on current design equations, the swelling in the steel of the first wall will exceed the design limit of 10% in approximately five years of operation. The wall erosion rate due to neutron and charged-particle sputtering, coupled with exfoliation due to blistering, is calculated to be 0.22 mm/yr. Finally, calculations reveal that the radiation damage problems in the superconducting magnets can be incorporated into the design without difficulty. The integral wall-loading limits for embrittlement, swelling, wall erosion, and magnet damage in UWMAK are calculated to be 2, 6, 25, and 100 MW yr/m2, respectively.